University Core and Graduation Requirements

University Core Requirements:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religion Cornerstones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachings and Doctrine of The Book of Mormon</td>
<td>1</td>
<td>2.0</td>
<td>REL A 275</td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td>1</td>
<td>2.0</td>
<td>REL A 250</td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td>1</td>
<td>2.0</td>
<td>REL C 225</td>
</tr>
<tr>
<td>The Eternal Family</td>
<td>1</td>
<td>2.0</td>
<td>REL C 200</td>
</tr>
<tr>
<td>The Individual and Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Heritage</td>
<td>1-2</td>
<td>3-6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year Writing</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td>1</td>
<td>3.0</td>
<td>PHSCS 416 or ENGL 316</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112*</td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112*</td>
</tr>
<tr>
<td>Arts, Letters, and Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civilization 1</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Civilization 2</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Arts</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Letters</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Biological Science</td>
<td>1</td>
<td>3-4.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Physical Science</td>
<td>1</td>
<td>3.0</td>
<td>PHSCS 222*</td>
</tr>
<tr>
<td>Social Science</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Core Enrichment: Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion Electives</td>
<td>3-4</td>
<td>6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Open Electives</td>
<td>Variable</td>
<td>Variable</td>
<td>personal choice</td>
</tr>
</tbody>
</table>

*These classes fill both University Core and Program Requirements (7 hours overlap)

Graduation Requirements:

- Minimum residence hours required: 30.0
- Minimum hours needed to graduate: 120.0

Suggested Sequence of Courses

FRESHMAN YEAR

- **1st Semester**
 - First-year Writing: 3.0
 - MATH 112: 4.0
 - PHSCS 121: 3.0
 - PHSCS 191: 0.5
 - Religion Cornerstone course: 2.0
 - General Electives: 2.0
 - **Total Hours:** 14.5

- **2nd Semester**
 - American Heritage: 3.0
 - MATH 113: 4.0
 - PHSCS 123: 3.0
 - PHSCS 140: 1.0
 - Religion Cornerstone course: 2.0
 - Arts: 3.0
 - **Total Hours:** 16.0

SOPHOMORE YEAR

- **3rd Semester**
 - PHSCS 145: 1.0
 - PHSCS 220: 3.0
 - PHSCS 230: 1.0
 - PHSCS 291: 0.5
 - Biological Science: 3.0
 - Religion Cornerstone course: 2.0
 - General Elective: 2.0
 - Social Science: 3.0
 - **Total Hours:** 15.5

- **4th Semester**
 - MATH 302: 4.0
 - PHSCS 222: 3.0
 - PHSCS 240: 2.0
 - Religion Cornerstone course: 2.0
 - General Elective: 3.0
 - **Total Hours:** 14.0

JUNIOR YEAR

- **5th Semester**
 - PHSCS 245: 2.0
 - PHSCS 318: 3.0
 - PHSCS 321: 3.0
 - PHSCS 330: 1.0
 - MATH 303: 4.0
 - Religion elective: 2.0
 - **Total Hours:** 15.0

- **6th Semester**
 - PHSCS 430: 1.0
 - Applied Physics Elective 1: 3.0
 - Applied Physics Elective 2: 3.0
 - **Total Hours:** 15.0

SENIOR YEAR

- **7th Semester**
 - PHSCS 416: 3.0
 - PHSCS 422 or PHSCS 471 or EC EN 466: 3.0
 - Civilization 2: 3.0
 - Arts: 3.0
 - **Total Hours:** 16.0

- **8th Semester**
 - PHSCS 441: 3.0
 - Applied Physics Elective 4: 3.0
 - Global & Cultural Awareness: 3.0
 - **Total Hours:** 15.0

Note: Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.
BS in Applied Physics (694825)
2017-2018 Program Requirements (61 - 65 Credit Hours)

REQUIREMENT 1 Complete 17 courses
NOTE: PHSCS 191 SHOULD BE TAKEN THE FIRST SEMESTER AS A FRESHMAN.
PHSCS 291 SHOULD BE TAKEN THE FIRST SEMESTER AS A SOPHOMORE.

MATH 113 - Calculus 2 4.0
MATH 313 - Elementary Linear Algebra 3.0
MATH 314 - Calculus of Several Variables 3.0

REQUIREMENT 2 Complete 1 course
MATH 303 - Mathematics for Engineering 2 4.0
MATH 334 - Ordinary Differential Equations 3.0

REQUIREMENT 3 Complete 2.0 hours from the following option(s)
COMPLETE A CAPSTONE PROJECT OR SENIOR THESIS INCLUDING THE FOLLOWING:
A. Choose a research mentor and group as early as possible, starting with information in Phscs 191 and 291, and discussions with faculty, your advisor, and the capstone project coordinator or senior thesis coordinator. It is best to start as a freshman or sophomore.

OPTION 6.1 Complete 2.0 hours from the following course(s)
PHSCS 492R - Capstone Project in Applied Physics 2.0
PHSCS 498R - Senior Thesis 3.0

REQUIREMENT 4 Complete 1 option
OPTION 4.1 Complete 2 courses
MATH 113 - Calculus 2 4.0
MATH 302 - Mathematics for Engineering 1 4.0

OPTION 4.2 Complete 3 courses

No more than 3 hours of D credit is allowed in major courses.
Consult with a faculty advisor as early as possible to choose electives.

REQUIREMENT 5 Complete 1 course
PHSCS 191 - Introduction to Computer Programming 3.0

REQUIREMENT 6 Complete 12 hours of electives (cannot include any courses already taken above).

PHSCS 230 - Computational Physics Lab 1 1.0
PHSC 240 - Design, Fabrication, and Use of Scientific Apparatus 2.0
PHSC 245 - Experiments in Contemporary Physics 2.0
PHSC 291 - Introduction to Physics Careers and Research 2 0.5
PHSC 318 - Introduction to Mathematical Physics 3.0
PHSC 321 - Mechanics 3.0
PHSC 330 - Computational Physics Lab 2 1.0
PHSC 340 - Computational Physics Lab 3 1.0
PHSC 441 - Electrodynamics and Magnetism 3.0

REQUIREMENT 7 Complete the Physics Major Field Test the last semester before graduation.

OPTION 5.1 Complete 2 hours of the following course(s)
PHSCS 330 - Introduction to Waves, Optics, and Thermodynamics 2.0
PHSCS 331 - Introduction to Electricity and Magnetism 2.0

OPTION 5.2 Complete 1 course
PHSCS 430 - Computational Physics Lab 3 1.0
PHSCS 441 - Electrodynamics and Magnetism 3.0

REQUIREMENT 8 Complete 3 courses

Note 1: Students planning careers in experimental, applied, or industrial physics should complete Stat 201.

Note 2: All students will benefit, through courses or individual study, by learning programming skills and numerical methods beyond what you are taught in C S 142 and our computational physics courses. Consider the following: CS courses, Math 410, Me En 373.

CAREER OPPORTUNITIES:
A degree in physics or physics-astronomy can provide: 1. Preparation for those who intend to enter industrial or governmental service as physicists or astronomers. 2. Education for those who intend to pursue graduate work in physics or astronomy. 3. Education in the subject matter of physics for prospective teachers of the physical sciences. 4. Undergraduate education for those who will pursue graduate work in the professions: business (e.g., an MBA), law, medicine, etc. 5. Fundamental background for other physical sciences and engineering, in preparation for graduate study in these fields. 6. Physics fundamentals required by the biological science, medical, dental, nursing, and related programs. For more information, see physics.byu.edu/undergraduate/careers.

THE DISCIPLINE:
Over the centuries physicists and astronomers have studied the fundamental principles that govern the structure and dynamics of matter and energy in the physical world, from subatomic particles to the cosmos. Physicists also apply this understanding to the development of new technologies. For example, physicists invented the first lasers and semiconductor electronic devices. Physics and astronomy students learn to approach complex problems in science and technology from a broad background in mechanics, electricity and magnetism, statistical and thermal physics, quantum mechanics, relativity, and optics. The tools they develop at BYU include problem solving by mathematical and computational modeling, as well as experimental discovery and analysis. All students gain professional experience in a research, capstone, or internship project, usually in close association with faculty. Together these experience can provide excellent preparation for employment of for graduate studies in physics, other sciences, engineering, medicine, law, or business. Most physicists and astronomers work in research and development in industrial, government, or university labs to solve new problems in technology and science. They also share the beauty discovered in our physical universe by teaching in high schools, colleges, and universities.

MAP DISCLAIMER
While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION
FACULTY ADVISORS ASSIGNED BY LAST TWO DIGITS OF BYU ID NUMBER. CONTACT:
Department of Physics and Astronomy
Brigham Young University
N-283 ESC