## University Core and Graduation Requirements

### University Core Requirements:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Religion Cornerstones</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachings and Doctrine of The Book of Mormon</td>
<td>1</td>
<td>2.0</td>
<td>REL A 275</td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td>1</td>
<td>2.0</td>
<td>REL A 250</td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td>1</td>
<td>2.0</td>
<td>REL C 225</td>
</tr>
<tr>
<td>The Eternal Family</td>
<td>1</td>
<td>2.0</td>
<td>REL C 200</td>
</tr>
<tr>
<td><strong>The Individual and Society</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Heritage</td>
<td>1-2</td>
<td>3-6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td><strong>Skills</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year Writing</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td>1</td>
<td>3.0</td>
<td>PHSCS 416 or ENGL 316</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>1</td>
<td>4.0</td>
<td>MATH 113*</td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td>1</td>
<td>4.0</td>
<td>MATH 113*</td>
</tr>
<tr>
<td><strong>Arts, Letters, and Sciences</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civilization 1</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Civilization 2</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Arts</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Letters</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Biological Science</td>
<td>1</td>
<td>3-4.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Physical Science</td>
<td>1</td>
<td>3.0</td>
<td>PHSCS 222*</td>
</tr>
<tr>
<td>Social Science</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td><strong>Core Enrichment: Electives</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion Electives</td>
<td>3-4</td>
<td>6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Open Electives</td>
<td>Variable</td>
<td>Variable</td>
<td>personal choice</td>
</tr>
</tbody>
</table>

*THESE CLASSES FILL BOTH UNIVERSITY CORE AND PROGRAM REQUIREMENTS (7 hours overlap)*

### Graduation Requirements:

- Minimum residence hours required: 30.0
- Minimum hours needed to graduate: 120.0

## Suggested Sequence of Courses

### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-year Writing</td>
<td>3.0</td>
<td>MATH 112 (FWSpSu)</td>
</tr>
<tr>
<td>MATH 112 (FWSpSu)</td>
<td>4.0</td>
<td>PHSCS 121 (FWSp)</td>
</tr>
<tr>
<td>PHSCS 121 (FWSp)</td>
<td>3.0</td>
<td>PHSCS 191 (F)</td>
</tr>
<tr>
<td>PHSCS 191 (F)</td>
<td>0.5</td>
<td>Religion Cornerstone course</td>
</tr>
<tr>
<td>General electives</td>
<td>2.0</td>
<td>Religion Elective</td>
</tr>
<tr>
<td><strong>Total Hours</strong></td>
<td>14.5</td>
<td><strong>Total Hours</strong></td>
</tr>
</tbody>
</table>

### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>3rd Semester</th>
<th>4th Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 145 (FSu)</td>
<td>1.0</td>
<td>PHSCS 441 (FSp)</td>
</tr>
<tr>
<td>PHSCS 220 (FWSu)</td>
<td>3.0</td>
<td>PHSCS 451 (F)</td>
</tr>
<tr>
<td>PHSCS 230 (FW)</td>
<td>1.0</td>
<td>PHSCS 498R (FWSpSu)</td>
</tr>
<tr>
<td>PHSCS 291 (F)</td>
<td>0.5</td>
<td>Letters</td>
</tr>
<tr>
<td>Biological Science</td>
<td>3.0</td>
<td>Civilization 1</td>
</tr>
<tr>
<td>Social Science</td>
<td>3.0</td>
<td>Religion Elective</td>
</tr>
<tr>
<td>Religion Cornerstone course</td>
<td>2.0</td>
<td>Total Hours</td>
</tr>
<tr>
<td>General Elective</td>
<td>2.0</td>
<td>8th Semester</td>
</tr>
<tr>
<td><strong>Total Hours</strong></td>
<td>15.5</td>
<td>PHSCS 416 (W)</td>
</tr>
<tr>
<td>MATH 302 (FW)</td>
<td>4.0</td>
<td>PHSCS 442 (WSu)</td>
</tr>
<tr>
<td>PHSCS 222 (FWSp)</td>
<td>3.0</td>
<td>PHSCS 452 (W)</td>
</tr>
<tr>
<td>PHSCS 240 (FW)</td>
<td>2.0</td>
<td>Religion Cornerstone course</td>
</tr>
<tr>
<td>General Elective</td>
<td>3.0</td>
<td>Total Hours</td>
</tr>
</tbody>
</table>

### JUNIOR YEAR

<table>
<thead>
<tr>
<th>5th Semester</th>
<th>6th Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 303 (FW)</td>
<td>4.0</td>
<td>Total Hours</td>
</tr>
<tr>
<td>REL A 275</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>REL A 250</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>REL C 225</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>REL C 200</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.
BS in Physics (694821)
2017-2018 Program Requirements (62 - 65 Credit Hours)

No more than 3 hours of D credit is allowed in major courses.

REQUIREMENT 1 Complete 22 courses
NOTE: PHSCS 191 SHOULD BE TAKEN THE FIRST SEMESTER AS A FRESHMAN.
PHSCS 291 SHOULD BE TAKEN THE FIRST SEMESTER AS A SOPHOMORE.

C S 142 - Introduction to Computer Programming 3.0
PHSCS 121 - Introduction to Newtonian Mechanics 3.0
PHSCS 123 - Introduction to Waves, Optics, and Thermodynamics 3.0
PHSCS 140 - Electronics Lab 1.0
PHSCS 145 - Experimental Methods in Physics 1.0
PHSCS 191 - Introduction to Physics Careers and Research 1 0.5
PHSCS 220 - Introduction to Electricity and Magnetism 3.0
*PHSCS 222 - Modern Physics 3.0
PHSCS 230 - Computational Physics Lab 1 1.0
PHSCS 240 - Design, Fabrication, and Use of Scientific Apparatus 2.0
PHSCS 245 - Experiments in Contemporary Physics 2.0
PHSCS 291 - Introduction to Physics Careers and Research 2 0.5
PHSCS 318 - Introduction to Mathematical Physics 3.0
PHSCS 321 - Mechanics 3.0
PHSCS 330 - Computational Physics Lab 2 1.0
PHSCS 360 - Statistical and Thermal Physics 3.0
PHSCS 430 - Computational Physics Lab 3 1.0
PHSCS 441 - Electrostatics and Magnetism 3.0
PHSCS 442 - Electrodynamics 3.0
PHSCS 451 - Quantum Mechanics 3.0
PHSCS 452 - Applications of Quantum Mechanics 3.0
PHSCS 471 - Principles of Optics 3.0

REQUIREMENT 2 Complete 1 option

OPTION 2.1 Complete 2 courses
  *MATH 113 - Calculus 2 4.0
  MATH 302 - Mathematics for Engineering 1 4.0

OPTION 2.2 Complete 3 courses
  *MATH 113 - Calculus 2 4.0
  MATH 313 - Elementary Linear Algebra 3.0
  MATH 314 - Calculus of Several Variables 3.0

REQUIREMENT 3 Complete 1 course
MATH 303 - Mathematics for Engineering 2 4.0
MATH 334 - Ordinary Differential Equations 3.0

REQUIREMENT 4 Complete 1 option

SENIOR THESIS:

Complete a senior thesis, including the following:
A. Choose a research mentor and group as early as possible, starting
with information in Phscs 191 and 291, and discussion with faculty, your
advisor and senior thesis coordinator. It is best to start as a freshman or
sophomore. Interdisciplinary work in other departments or in
interships is possible.

OPTION 4.1 Complete 2.0 hours from the following course(s)

PHSCS 498R - Senior Thesis 3.0
You may take up to 2 credit hours.

REQUIREMENT 5
Students are required to take the Physics "Major Field Test" the last semester
before they graduate. The test is a standardized assessment of
undergraduate physics written by ETS (Educational Testing Service). The ETS
website contains a description of the exam and sample problems:
http://www.ets.org/mft/about/content/physics. Results of the exam do not
appear on the transcript or affect the GPA. Students should contact the
Physics undergraduate secretary to make arrangements for taking the exam;
typically it's done in the Testing Center before final exams begin.

Note 1: Students planning careers in experimental, applied, or industrial
physics should complete Stat 201.

Note 2: All students will benefit, through courses or individual study, by
learning programming skills and numerical methods beyond what you are
taught in C S 142 and our computational physics courses. Consider the
following: C S courses, Math 410, Me En 373.

Note 3: Students planning graduate school in physics should learn complex
analysis. Consider the following: Math 332, Phscs 601, 602.

THE DISCIPLINE:

Over the centuries physicists and astronomers have studied the
fundamental principles that govern the structure and dynamics
of matter and energy in the physical world, from subatomic
particles to the cosmos. Physicists also apply this
understanding to the development of new technologies. For
examples, physicists invented the first lasers and
semiconductor electronic devices.

Physics and astronomy students learn to approach complex
problems in science and technology from a broad background
in mechanics, electricity and magnetism, statistical and
thermal physics, quantum mechanics, relativity, and optics.
The tools they develop at BYU

include problem solving by mathematical and computational
modeling, as well as experimental discovery and analysis. All
students gain professional experience in a research, capstone,
or internship project, usually in close association with faculty.
Together these experience can provide excellent preparation
for employment of for graduate studies in physics, other
sciences, engineering, medicine, law, or business.

Most physicists and astronomers work in research and
development in industrial, government, or university labs to
solve new problems in technology and science. They also share
the beauty discovered in our physical universe by teaching in
high schools, colleges, and universities.

CAREER OPPORTUNITIES:

A degree in physics or physics-astronomy can provide:
1. Preparation for those who intend to enter industrial or
governmental service as engineers, technicians, physicists, or
astronomers.
2. Education for those who intend to pursue graduate work in
physics or astronomy.
3. Education in the subject matter of physics for prospective
teachers of the physical sciences.
4. Undergraduate education for those who will pursue graduate work
in the professions: business (e.g., an MBA), law (especially
patent law), medicine, etc.
5. Fundamental background for other physical sciences and
engineering, in preparation for graduate study in these fields.
6. Physics fundamentals required by the biological science,
medical, dental, nursing, and related programs.

For more information, see physics.byu.edu/undergraduate.
For more information on careers in your major, see physics.byu.
edu/undergraduate/careers.
BS in Physics (694821)
2017-2018

MAP DISCLAIMER
While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION
Department of Physics and Astronomy
Brigham Young University
N-283 ESC
Provo, UT 84602
Telephone: (801) 422-4361
physics_office@byu.edu

ADVICEMENT CENTER INFORMATION
Physical and Mathematical Sciences College Advisement Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674