University Core and Graduation Requirements

University Core Requirements:

Religion Cornerstones

<table>
<thead>
<tr>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>REL A 275</td>
</tr>
</tbody>
</table>

- Teachings and Doctrine of The Book of Mormon
- Jesus Christ and the Everlasting Gospel
- Foundations of the Restoration
- The Eternal Family
- The Individual and Society

Skills

- First Year Writing
- Advanced Written and Oral Communications
- Quantitative Reasoning
- Languages of Learning (Math or Language)

Arts, Letters, and Sciences

- Civilization 1
- Civilization 2
- Arts
- Letters
- Biological Science
- Physical Science
- Social Science

Core Enrichment: Electives

- Religion Electives
- Open Electives

THESE CLASSES FILL BOTH UNIVERSITY CORE AND PROGRAM REQUIREMENTS (7 hours overlap)

Graduation Requirements:

- Minimum residence hours required: 30.0
- Minimum hours needed to graduate: 120.0

Suggested Sequence of Courses

Freshman Year

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td>2nd Semester</td>
</tr>
</tbody>
</table>

15.0 Total Hours

Sophomore Year

<table>
<thead>
<tr>
<th>3rd Semester</th>
<th>4th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Semester</td>
<td>4th Semester</td>
</tr>
</tbody>
</table>

15.5 Total Hours

Junior Year

<table>
<thead>
<tr>
<th>5th Semester</th>
<th>6th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Semester</td>
<td>6th Semester</td>
</tr>
</tbody>
</table>

15.0 Total Hours

Senior Year

<table>
<thead>
<tr>
<th>7th Semester</th>
<th>8th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>7th Semester</td>
<td>8th Semester</td>
</tr>
</tbody>
</table>

14.0 Total Hours

Note:

Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.
BS in Physics and Astronomy (694832)

2018-2019 Program Requirements (68 - 69 Credit Hours)

No more than 3 hours of D credit is allowed in major courses.

REQUIREMENT 1 Complete 1 option

OPTION 1.1 Complete 20 courses

- C S 142 - Introduction to Computer Programming 3.0
- *MATH 113 - Calculus 2 4.0
- PHSCS 121 - Introduction to Newtonian Mechanics 3.0
- PHSCS 123 - Introduction to Waves, Optics, and Thermodynamics 3.0
- PHSCS 127 - Descriptive Astronomy 3.0
- PHSCS 191 - Introduction to Physics Careers and Research 1 0.5
- PHSCS 220 - Introduction to Electricity and Magnetism 3.0
- *PHSCS 222 - Modern Physics 3.0
- PHSCS 227 - Solar System Astronomy 3.0
- PHSCS 228 - Stellar and Extragalactic Astronomy 3.0
- PHSCS 230 - Computational Physics Lab 1 1.0
- PHSCS 291 - Introduction to Physics Careers and Research 2 0.5
- PHSCS 318 - Introduction to Mathematical Physics 3.0
- PHSCS 321 - Mechanics 3.0
- PHSCS 329 - Observational Astronomy 3.0
- PHCS 330 - Computational Physics Lab 2 1.0
- PHSCS 427 - Introduction to Astrophysics 3.0
- PHSCS 428 - Introduction to Astrophysics 3.0
- PHSCS 441 - Electrostatics and Magnetism 3.0
- PHSCS 451 - Quantum Mechanics 3.0

Note: Phscs 191 should be taken the first semester as a freshman. Phscs 291 should be taken the first semester as a sophomore.

REQUIREMENT 2 Complete 2 courses

- PHSCS 360 - Statistical and Thermal Physics 3.0
- PHCS 442 - Electrodynamics 3.0
- PHCS 452 - Applications of Quantum Mechanics 3.0
- PHCS 471 - Principles of Optics 3.0

REQUIREMENT 3 Complete 1 option

OPTION 3.1 Complete 2 courses

- MATH 302 - Mathematics for Engineering 1 4.0
- MATH 303 - Mathematics for Engineering 2 4.0

OPTION 3.2 Complete 3 courses

- MATH 313 - Elementary Linear Algebra 3.0
- MATH 314 - Calculus of Several Variables 3.0
- MATH 334 - Ordinary Differential Equations 3.0

REQUIREMENT 4 Complete 1 option

SENIOR THESIS:

Complete a senior thesis, including the following:

A. Choose a research mentor and group as early as possible, starting with information in Phscs 191 and 192, and discussions with faculty, your advisor, and the senior thesis coordinator. It is best to start as a freshman or sophomore. Some internships may qualify for your project.

OPTION 4.1 Complete 2.0 hours from the following course(s)

- PHSCS 498R - Senior Thesis 3.0v

You may take up to 2 credit hours.

REQUIREMENT 5

Students are required to take the Physics "Major Field Test" the last semester before they graduate. The test is a standardized assessment of undergraduate physics written by ETS (Educational Testing Service). The ETS website contains a description of the exam and sample problems: http://www.ets.org/mft/about/content/physics. Results of the exam do not appear on the transcript or affect the GPA. Students should contact the Physics undergraduate secretary to make arrangements for taking the exam; typically it’s done in the Testing Center before mid-semester.

Note: Students planning on graduate school in astronomy should consider completing all four of Phscs 360, 442, 452, 471, instead of only two. Gain additional research experience by completing PHSCS 430 (Computational Physics 3) and ME En 473 (Introduction to Scientific Computing).

THE DISCIPLINE:

Over the centuries physicists and astronomers have studied the fundamental principles that govern the structure and dynamics of matter and energy in the physical world, from subatomic particles to the cosmos. Physicists also apply this understanding to the development of new technologies. For example, physicists invented the first lasers and semiconductor electronic devices.

Physics and astronomy students learn to approach complex problems in science and technology from a broad background in mechanics, electricity and magnetism, statistical and thermal physics, quantum mechanics, relativity, and optics. The tools they develop at BYU include problem solving by mathematical and computational modeling, as well as experimental discovery and analysis. All students gain professional experience in a research, capstone, or internship project, usually in close association with faculty. Together these experiences can provide excellent preparation for employment or for graduate studies in physics, other sciences, engineering, medicine, law, or business.

Most physicists and astronomers work in research and development in industrial, government, or university labs to solve new problems in technology and science. They also share the beauty discovered in our physical universe by teaching in high schools, colleges, and universities.

CAREER OPPORTUNITIES:

A degree in physics or physics-astronomy can provide:

1. Preparation for those who intend to enter industrial or governmental service as physicists or astronomers.
2. Education for those who intend to pursue graduate work in physics or astronomy.
3. Education in the subject matter of physics for prospective teachers of the physical sciences.
4. Undergraduate education for those who will pursue graduate work in the professions: business (e.g., an MBA), law, medicine, etc.
5. Fundamental background for other physical sciences and engineering, in preparation for graduate study in these fields.
6. Physics fundamentals required by the biological science, medical, dental, nursing, and related programs.

For more information, see www.physics.byu.edu/undergraduate/careers.

MAP DISCLAIMER

While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college.
DEPARTMENT INFORMATION

FACULTY ADVISORS ASSIGNED BY LAST TWO DIGITS OF BYU ID NUMBER. CONTACT:

Department of Physics and Astronomy
Brigham Young University
N-283 ESC
Provo, UT 84602
Telephone: (801) 422-4361

ADVISEMENT CENTER INFORMATION

Physical and Mathematical Sciences College Advisement Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674