BS in Electrical Engineering (393550) MAP Sheet
Engineering, Electrical and Computer Engineering
For students entering the degree program during the 2021-2022 curricular year.

<table>
<thead>
<tr>
<th>University Core and Graduation Requirements</th>
<th>Suggested Sequence of Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Requirements:</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>#Classes</td>
<td>Hours</td>
</tr>
<tr>
<td>Religion Cornerstones</td>
<td></td>
</tr>
<tr>
<td>Teachings and Doctrine of The Book of Mormon</td>
<td></td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td></td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td></td>
</tr>
<tr>
<td>The Eternal Family</td>
<td></td>
</tr>
<tr>
<td>The Individual and Society</td>
<td></td>
</tr>
<tr>
<td>American Heritage</td>
<td></td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td></td>
</tr>
<tr>
<td>Skills</td>
<td></td>
</tr>
<tr>
<td>First Year Writing</td>
<td></td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td></td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td></td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td></td>
</tr>
<tr>
<td>Arts, Letters, and Sciences</td>
<td></td>
</tr>
<tr>
<td>Civilization 1</td>
<td></td>
</tr>
<tr>
<td>Civilization 2</td>
<td></td>
</tr>
<tr>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Letters</td>
<td></td>
</tr>
<tr>
<td>Biological Science</td>
<td></td>
</tr>
<tr>
<td>Physical Science</td>
<td></td>
</tr>
<tr>
<td>Social Science</td>
<td></td>
</tr>
<tr>
<td>Core Enrichment: Electives</td>
<td></td>
</tr>
<tr>
<td>Religion Electives</td>
<td></td>
</tr>
<tr>
<td>Open Electives</td>
<td></td>
</tr>
</tbody>
</table>

FOR GE QUESTIONS CONTACT THE ADVISEMENT CENTER -- FOR PROGRAM QUESTIONS SEE YOUR DEPARTMENT ADVISOR
"THESE CLASSES FILL BOTH UNIVERSITY CORE AND PROGRAM REQUIREMENTS (26–17 hours overlap)."
REDUCTION OF TOTAL CREDITS IS RECOMMENDED by choosing a Civilization 2 course that also double counts for the Arts requirement (if a separate Letters course is taken) or the Letters requirement (if a separate Arts course is taken). GCA might also double count with one of several University Core requirements. See the University Core list for specifics (core.byu.edu).

Graduation Requirements:
- Minimum residence hours required: 30.0
- Minimum hours needed to graduate: 120.0

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>1st Semester</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>5th Semester</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>2nd Semester</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

5th Semester

<table>
<thead>
<tr>
<th>4th Semester</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>6th Semester</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

*Actual course sequences should be adapted to individual needs. For example, students with AP credits in Math, Physics, or Computer Science will already have credit for some initial courses. Many students find it beneficial to attend one or more spring or summer terms. On average, students take about nine semesters to graduate in this program.

Note: Students are encouraged to complete an average of 16 credit hours each semester or 32 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.

REQUIREMENT 1 Complete 20 courses
C S 142 - Introduction to Computer Programming 3.0
C S 235 - Data Structures and Algorithms 3.0
EC EN 191 - New Student Seminar 0.5
EC EN 220 - Fundamentals of Digital Systems 3.0
EC EN 240 - Circuit Analysis and Laboratory 4.0
EC EN 330 - Introduction to Embedded System Programming 4.0
EC EN 340 - Electronic Circuit Design 1 4.0
EC EN 360 - Electromagnetic Fields and Waves 4.0
EC EN 380 - Signals and Systems 4.0
EC EN 390 - Junior Team Design Project 3.0
EC EN 391 - Junior Seminar 0.5
EC EN 475 - Capstone Design 1 3.0
EC EN 476 - Capstone Design 2 3.0
MATH 112 - Calculus 1 4.0
MATH 113 - Calculus 2 4.0
MATH 314 - Calculus of Several Variables 3.0
MATH 334 - Ordinary Differential Equations 3.0
PHSCS 121 - Introduction to Newtonian Mechanics 3.0
PHSCS 220 - Introduction to Electricity and Magnetism 3.0
STAT 201 - Statistics for Engineers and Scientists 3.0

REQUIREMENT 2 Complete 1 option
OPTION 2.1 Complete 1 course
MATH 313 - (Not currently offered) 3.0

OPTION 2.2 Complete 2 courses
MATH 213 - Elementary Linear Algebra 2.0
MATH 216 - Computational Linear Algebra 1.0

REQUIREMENT 3 Complete 2 options
OPTION 3.1 Complete 1 course
CHEM 105 - General College Chemistry 1 with Lab (Integrated) 4.0
CHEM 111 - Principles of Chemistry 1 4.0

OPTION 3.2 Complete 1 course
NOTE: WRGT 312 RECOMMENDED.
WRGT 312 - Persuasive Writing 3.0
WRGT 316 - Technical Communication 3.0

Complete at least 18 credit hours of TECHNICAL ELECTIVES from the following two requirements.

REQUIREMENT 4 Complete 16.0 hours from the following course(s)
TECHNICAL ELECTIVES:
EC EN 323 - Computer Organization 4.0
EC EN 445 - Introduction to Mixed-Signal VLSI 4.0
EC EN 446 - Power Electronics 4.0
EC EN 450 - Introduction to Semiconductor Devices 3.0
EC EN 452 - Experiments in Integrated Circuit Development 1.0
EC EN 462 - Electromagnetic Radiation and Propagation 2.0
EC EN 464 - Wireless Communication Circuits 2.0
EC EN 466 - Introduction to Optical Engineering 2.0
EC EN 467 - Introduction to Digital Communication Theory 4.0
EC EN 473 - (EC En-Me En 431) Design of Control Systems 4.0
EC EN 485 - Introduction to Digital Communication Theory 4.0
EC EN 487 - Introduction to Discrete-Time Signal Processing 4.0

REQUIREMENT 5 Complete 2.0 hours from the following course(s)
TECHNICAL ELECTIVES. (NOTE: EC EN COURSES WILL NOT DOUBLE COUNT.)
OTHER ENGINEERING, MATHEMATICS, PHYSICS, OR COMPUTER SCIENCE COURSES AS SPECIFIED OR APPROVED BY THE EC EN DEPARTMENT ARE ALSO ACCEPTABLE.
C S 236 - Discrete Structures 3.0
C S 240 - Advanced Programming Concepts 4.0
C S 340 - Software Design 3.0
C S 345 - Operating Systems Design 3.0
C S 360 - (Not currently offered) 3.0
C S 428 - Software Engineering 3.0
C S 431 - Algorithmic Languages and Compilers 3.0
C S 452 - Database Modeling Concepts 3.0
C S 455 - Computer Graphics 3.0
C S 456 - Introduction to User Interface Software 3.0
C S 460 - Computer Communications and Networking 3.0
C S 462 - Large-Scale Distributed System Design 3.0
C S 465 - Computer Security 3.0
C S 470 - Introduction to Artificial Intelligence 3.0
C S 472 - Introduction to Machine Learning 3.0
C S 473 - Computer Organization 4.0
C S 474 - Computer Systems 4.0
C S 475 - Real-Time Operating Systems 4.0
C S 476 - Database Systems 4.0
C S 477 - Embedded Systems 4.0
C S 481 - Introduction to Mixed-Signal VLSI 4.0
C S 486 - Power Electronics 4.0

EC EN 450 - Introduction to Semiconductor Devices 3.0
EC EN 452 - Experiments in Integrated Circuit Development 1.0
EC EN 462 - Electromagnetic Radiation and Propagation 2.0
EC EN 464 - Wireless Communication Circuits 2.0
EC EN 466 - Introduction to Optical Engineering 2.0
EC EN 483 - (EC En-Me En 431) Design of Control Systems 4.0
EC EN 485 - Introduction to Digital Communication Theory 4.0
EC EN 487 - Introduction to Discrete-Time Signal Processing 4.0
MATH 341 - Theory of Analysis 1 3.0
MATH 342 - Theory of Analysis 2 3.0
MATH 352 - Introduction to Complex Analysis 3.0
MATH 355 - Graph Theory 3.0
MATH 371 - Abstract Algebra 1 3.0
MATH 372 - Abstract Algebra 2 3.0
MATH 411 - Numerical Methods 3.0
MATH 447 - Introduction to Partial Differential Equations 3.0
MATH 450 - Combinatorics 3.0
MATH 487 - Number Theory 3.0
PHSCS 222 - Modern Physics 3.0

REQUIREMENT 6 Complete the department exit interview.

THE DISCIPLINE:
Electrical and Computer Engineering is one of the most exciting, diverse, and forward-looking disciplines offered at the university. Contemporary society is in the midst of an information revolution, created in large part from the fruits of electrical and computer engineering. Electrical and computer engineers have been primary contributors to the astonishing developments in communication, computer, and network technology. They have designed devices and systems that have a significant impact on manufacturing, transportation, and environmental monitoring. Smart phones, tablets, digital cameras, high definition television, solar power, microprocessors, lasers, unmanned air vehicles, medical imaging systems, and autonomous robotic systems are all examples of devices and systems designed by electrical and computer engineers. Innovations that flow out of electrical and computer engineering sustain the national economy and improve the quality of life for people throughout the world. In the future, society will look to electrical and computer engineers to address grand challenges ranging from sustainable and efficient energy to health care technologies and global communications networks.
The Department of Electrical and Computer Engineering at Brigham Young University offers accredited degrees in Electrical Engineering and Computer Engineering. Electrical Engineering focuses on microelectronics, electromagnetics, electronic circuits, wireless communications, signal processing, biomedical applications, photonics, and controls. Computer Engineering focuses on the design of digital computing devices and systems and involves hardware and software, operating systems, digital logic, real-time systems, and computer vision. Both programs combine fundamental principles with hands-on learning, including an innovative Junior Core experience that integrates classroom knowledge with project-based learning.

CO-OP AND INTERNSHIP EXPERIENCES:
Optional co-op and internship experiences with engineering firms throughout the USA are available. These experiences may extend over one semester plus the spring/summer terms, for a total of eight months.

PROFESSIONAL AND HONOR SOCIETIES:
The student chapter of the Institute of Electrical and Electronic Engineers is the professional organization; Eta Kappa Nu is the electrical and computer engineering honor society; and Tau Beta Pi is the honor society for all engineering fields.

CAREERS:
Electrical and computer engineers are among the most actively recruited students graduating from a four-year program. Baccalaureate engineers typically start their careers as members of project teams with one or more of the following responsibilities: designing digital, analog, or opto-electronic circuits; creating or testing application-specific software; testing components or systems; or providing technical support for sales. Later on, many engineers find themselves pursuing managerial careers, starting their own companies, or even managing entrepreneurial funds. Top graduates are also well received by medical schools, law schools, and professional and management programs.

The Electrical Engineering baccalaureate program is accredited by the Engineering Accreditation Commission of ABET, Inc., http://www.abet.org.

MAP DISCLAIMER
While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION
Electrical and Computer Engineering Department
Brigham Young University
460/450 Engineering Building
Provo, UT 84602
Telephone: 801-422-4012

ADVISEMENT CENTER INFORMATION
Engineering Advisement Center
Brigham Young University
246 Engineering Building
Provo, UT 84602
Telephone: 801-422-4325
Email: engineering_advisement@byu.edu