University Core and Graduation Requirements:

University Core Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religion Cornerstones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachings and Doctrine of The Book of Mormon</td>
<td>1</td>
<td>2.0</td>
<td>REL A 275</td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td>1</td>
<td>2.0</td>
<td>REL A 250</td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td>1</td>
<td>2.0</td>
<td>REL C 225</td>
</tr>
<tr>
<td>The Eternal Family</td>
<td>1</td>
<td>2.0</td>
<td>REL C 200</td>
</tr>
<tr>
<td>The Individual and Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Heritage</td>
<td>1-2</td>
<td>3-6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year Writing</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td>1</td>
<td>3.0</td>
<td>CHEM 391*</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112* or 113*</td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112* or 113*</td>
</tr>
<tr>
<td>Arts, Letters, and Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civilization 1</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Civilization 2</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Arts</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Letters</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Biological Science</td>
<td>1</td>
<td>3-4.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Physical Science</td>
<td>1</td>
<td>3.0</td>
<td>CHEM 111* and PHSCS 121, 123*, or 220*</td>
</tr>
<tr>
<td>Social Science</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Core Enrichment: Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion Electives</td>
<td>3-4</td>
<td>6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Open Electives</td>
<td>Variable</td>
<td>Variable</td>
<td>personal choice</td>
</tr>
</tbody>
</table>

THESE CLASSES FILL BOTH UNIVERSITY CORE AND PROGRAM REQUIREMENTS (14 hours overlap)

Graduation Requirements:

- Minimum residence hours required: 30.0
- Minimum hours needed to graduate: 120.0

Suggested Sequence of Courses

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

- First-year Writing or American Heritage: 3.0
- Open elective: 2.0
- CHEM 111 (F): 4.0
- MATH 112 (FWSpSu): 4.0
- Religion Cornerstone course: 2.0

SOPHOMORE MORE YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>3rd Semester</th>
<th>4th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15-16.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

- CHEM 227 (FSp): 4.0
- CHEM 351M (F): 3.0
- STAT 201 (FW) or MATH 302 (FW): 3-4.0
- PHSCS 121 (FWSp): 3.0
- Religion Cornerstone course: 2.0

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>5th Semester</th>
<th>6th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>16-17.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

- Advanced chemistry elective: 3.0
- Religion elective: 2.0
- Open electives: 10.0

SENIOR YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>7th Semester</th>
<th>8th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

- CHEM 495 (FW): 3.0
- Advanced chemistry elective: 2.0

*Note: Depending on the option chosen, Chem 464/465(W) should be taken in semester 6, or Chem 584(F) in semester 7. An advanced chemistry elective should be taken in the alternate semester.

**Note: The department recommends a review of progress and planned registration with a faculty advisor by the end of the first week of classes in the first semester or term at BYU and in the semester when 30, 60, and 90 hours are completed. Call 422-6269 or come to C104 BNSN to schedule an appointment. New incoming students should attend the chemistry and biochemistry session during New Student Orientation, where they can meet with a faculty advisor and review their planned registration.

Note: Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.**
No more than 3 hours of D credit is allowed in major courses.

The Chemistry and Biochemistry Department requires the final 10 hours of required chemistry credit to be taken in residence at BYU for this degree program. These hours may also go toward BYU’s 30-hour residency requirement for graduation.

REQUIREMENT 1 Complete 10 courses
CHEM 111 - Principles of Chemistry 1 4.0
CHEM 112 - Principles of Chemistry 2 3.0
CHEM 113 - Introductory General Chemistry Laboratory 2.0
CHEM 201 - Chemical Handling and Safe Laboratory Practices 0.5
CHEM 227 - Principles of Chemical Analysis 4.0
CHEM 351M - Organic Chemistry 1 - Majors 3.0
CHEM 352M - Organic Chemistry 2 - Majors 3.0
CHEM 354 - Organic Chemistry Laboratory—Majors 2.0
*CHEM 391 - Technical Writing Using Chemical Literature 3.0
CHEM 495 - Senior Seminar 1.0

Note: With departmental approval, Chem 105 may substitute for Chem 111, and Chem 106 for Chem 112.

REQUIREMENT 2 Complete 1 option

OPTION 2.1 Complete 2 groups

GROUP 2.1.1 Complete 3 courses
CHEM 468 - Biophysical Chemistry 3.0
CHEM 481M - Biochemistry—Majors 3.0
STAT 201 - Statistics for Engineers and Scientists 3.0

GROUP 2.1.2 Complete 1 course
CHEM 584 - Advanced Biochemistry Methods 1 3.0
CHEM 586 - Advanced Biochemistry Methods 2 3.0

OPTION 2.2 Complete 5 courses
CHEM 462 - Physical Chemistry 1 3.0
CHEM 463 - Physical Chemistry 2 3.0
CHEM 464 - Physical Chemistry Laboratory 1 1.0
CHEM 465 - Physical Chemistry Laboratory 2 1.0
MATH 302 - Mathematics for Engineering 1 4.0

REQUIREMENT 3 Complete 5 courses
MATH 112 - Calculus 1 4.0
MATH 113 - Calculus 2 4.0
PHSCS 121 - Introduction to Newtonian Mechanics 3.0
PHSCS 123 - Introduction to Waves, Optics, and Thermodynamics 3.0
PHSCS 220 - Introduction to Electricity and Magnetism 3.0

REQUIREMENT 4 Complete 3.0 hours from the following option(s)
After consulting with an advisor, complete 3 hours from the following:

OPTION 4.1 Complete 3.0 hours from the following course(s)

CHEM 455 - Synthesis and Qualitative Organic Analysis 3.0
CHEM 462 - Physical Chemistry 1 3.0
CHEM 463 - Physical Chemistry 2 3.0
CHEM 464 - Physical Chemistry Laboratory 1 1.0
CHEM 465 - Physical Chemistry Laboratory 2 1.0
CHEM 481M - Biochemistry—Majors 3.0
CHEM 482 - Mechanisms of Molecular Biology 3.0
CHEM 489 - Structural Biochemistry 3.0
CHEM 496R - Academic Internship: Chemistry and Biochemistry 6.0v
You may take up to 4 credit hours.
CHEM 497R - Undergraduate Special Problems 6.0v
You may take up to 4 credit hours.
CHEM 499R - Honors Thesis 6.0v
You may take up to 4 credit hours.
CHEM 514 - Inorganic Chemistry 3.0
CHEM 518 - Advanced Inorganic Laboratory 2.0
CHEM 521 - Instrumental Analysis Lecture 2.0
CHEM 523 - Instrumental Analysis Laboratory 2.0
CHEM 552 - Advanced Organic Chemistry 3.0
CHEM 553 - Advanced Organic Chemistry 3.0
CHEM 563 - Reaction Kinetics 3.0
CHEM 565 - Introduction to Quantum Chemistry 3.0
CHEM 567 - Statistical Mechanics 3.0
CHEM 569 - Fundamentals of Spectroscopy 3.0
CHEM 581 - Advanced Biochemical Methodology 1 3.0
CHEM 583 - Advanced Biochemical Methodology 2 3.0
CHEM 594R - General Seminar 0.5
CHEM 59ER - Special Topics in Chemistry 3.0v
You may take up to 4 credit hours.
PDBIO 360 - Cell Biology 3.0

Note 1: Chem 500 does not count toward filling this requirement.
Note 2: Elective courses must be different from required courses.

THE DISCIPLINE:
The Chemistry Bachelor of Arts degree provides preparation for those individuals in preprofessional programs (e.g., medicine, dentistry, business administration, or law). It also provides background for careers in chemistryrelated professions (e.g., information specialist, safety engineer, forensics). Chemists and biochemists study the fundamental processes that govern the natural world, including atomic structure and how atoms interact to form molecules and materials. They study the mechanisms of chemical processes, including those that underpin living systems such as the transfer of information from DNA to RNA to proteins. They work to develop simplifying models (theories) that permit the correlation and explanation of observations about the behavior of life to the structure of rocks and minerals.

Chemistry and biochemistry provide an essential foundation for the medical sciences, engineering (especially chemical engineering), electronics, energy, environmental sciences, materials science, pharmacy, and virtually all manufacturing processes. Chemistry and biochemistry are active branches of science that are vital to human existence. Inasmuch as the field embraces all aspects of the material world, it is subdivided into five areas of interest. Examples of these diverse areas include the regulation of protein synthesis, cellular signal transduction at the molecular level and proteomics (biochemistry), design and synthesis of medicinal compounds, catalysts and polymers (organic chemistry), design and synthesis of new molecular structures and materials (inorganic chemistry), spectroscopic study of energy transfer and molecular structures (physical chemistry), and analysis of medicinal compounds, biological materials, and contaminants or trace elements found in the environment (analytical chemistry).

Chemistry and biochemistry involve far more than test tubes and beakers. They include sophisticated methodologies such as recombinant DNA technology, working with a variety of instruments such as mass spectrometers, calorimeters, chromatographs, ultracentrifuges, lasers, X-ray diffractometers, electron microscopes and nuclear magnetic resonance spectrometers, all of which...
are used by undergraduate chemistry and biochemistry students at BYU. Computers also play an important role in these disciplines, with applications ranging from simulation of molecules and their interactions to the collection and analysis of data. The chemistry and biochemistry curricula are both rigorous and intellectually rewarding.

CAREER OPPORTUNITIES:
Graduates in chemistry and biochemistry obtain positions in education and many different industries, performing analysis, synthesis, characterization, observation, and modeling. Those who work hard, are creative, and have intellectual curiosity are in particular demand. The discipline also provides an excellent preprofessional course of study for those interested in medicine, dentistry, law, and business.

MAP DISCLAIMER
While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION
Department of Chemistry and Biochemistry
Brigham Young University
C-100 BNSN
Provo, UT 84602
Telephone: (801) 422-6269

ADVISEMENT CENTER INFORMATION
Physical and Mathematical Sciences College Advisement Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674